
DRAFT
Internal Use Only

dod_interpretations_1.3_v3.doc

DoD Interpretations of the High Level Architecture Interface
Specification, Version 1.3: Release 3

Introduction
Some areas of the High Level Architecture Interface Specification, Version 1.3, are not as
well-specified as they could be and as a result may have questionable interpretations.
Consequently, as a guide to RTI developers and users, we offer the following U.S.
Department of Defense interpretations of ambiguous portions of the HLA Interface
Specification, Version 1.3.

How to use this document
This document sets forth the current release (Release 3) of the U.S. DoD Interpretations
of Version 1.3 of the HLA Interface Specification. As the DoD gains experience using
the HLA, this document is expected to grow and change. In particular, additional
interpretations may be added or existing interpretations may be deleted as deemed
necessary. Any time interpretations are added or deleted, a revised DoD Interpretations
document, which has a unique number (e.g. Release N), will be released.

RTI implementations that are verified as compliant to the HLA Interface Specification,
Version 1.3 are verified as compliant not only to the HLA Interface Specification Version
1.3, but also to a particular release of the DoD Interpretations of the HLA Interface
Specification Version 1.3. All RTIs will be verified as compliant to the latest release of
the DoD Interpretations for 1.3. The only exception to this rule would be certification of
an RTI that began verification testing before the latest release of the DoD Interpretations
was made available. In this case, an RTI can be verified to the previous release of the
DoD Interpretations if the RTI developer so wishes.

All previous releases of the DoD Interpretations are well-defined and can be constructed
from the current release of the DoD Interpretations using the pedigree feature that is
associated with each individual interpretation in the DoD Interpretations document. The
pedigree feature is a label that appears in square brackets [] at the end of each individual
interpretation below. It has the form [New in Release x] or [New in Release x; Deleted in
Release x+2]. The pedigree indicates in which release the interpretation was introduced
("New in") and, if appropriate, in which release the interpretation was deleted ("Deleted
in"). An interpretation that has a pedigree of the form [New in Release x], for example, is
present in not only release x of the DoD Interpretations document, but in all subsequent
releases of the DoD Interpretations document up to and including the current release.
This interpretation is not present, however, in any release of the DoD Interpretations
Document preceding release x. An interpretation that has a pedigree of the form [New in
Release x; Deleted in Release x+2] is present in only releases x and x+1 of the DoD
Interpretations document.

DRAFT
Internal Use Only

dod_interpretations_1.3_v3.doc

Service 4.3 : Destroy Federation Execution
Interpretation 1
The Destroy Federation Execution service may be invoked if there are unowned instance
attributes (instance attributes that are not owned by any federate in the federation
execution or by the RTI) in the federation execution. [New in Release 2]

Service 4.6: Register Federation Synchronization Point
Interpretation 1
The text of the Register Synchronization Point service states in the preconditions that "If
an optional set of federate designators is supplied, those federates must be joined to the
federation execution". The introductory text to this service says that the synchronization
label used must be unique. However, if this service is invoked with a set of joined
federates that includes a federate that is not joined to the federation execution, or if this
service is invoked with a synchronization point label that is already in use, an exception
will not be invoked.

When a federate invokes the Register Federation Synchronization Point service and
supplies a label and a set of federate designators as argument, the federate has no way of
knowing if the label is in use or if those federates are actually joined to the federation
execution at that time. So, if the label is in use or if a federate that is not joined is
included in the set, the service will execute successfully. However, the invoking federate
shall receive a Confirm Synchronization Point Registration callback (service 4.7) with a
registration success indicator of failure. [New in Release 2]

Interpretation 2
Once a synchronization has completed, a federate may use the same label for another
synchronization. [New in Release 2]

Service 4.11: Request Federation Save
Interpretation 1
The 1.3 Interface Specification is ambiguous with regard to when the RTI is expected to
instruct each time-constrained federate to save state. Service 4.11, Request Federation
Save, says:

...If the optional federation time argument is present, the RTI shall instruct each time-
constrained federate to save state when its value of logical time advances to the value
provided; and is shall instruct non-time-constrained federates to save state when the last
time-constrained federate's value of logical time advances to the value of the optional
federation save time provided....

It is unclear what is meant by "when its value of logical time advances to the value
provided".

This service is intended to work as follows:

DRAFT
Internal Use Only

dod_interpretations_1.3_v3.doc
When a save has been scheduled, each time-constrained federate shall be instructed to
save state (via the Initiate Federate Save service) as soon as (1) the federate has received
all messages that it will receive as TSO messages that have time stamps less than or
equal to the scheduled save time, and either (2) the federate is in the time advancing state
as a result of invocation of either the Time Advance Request Available (TARA), Next
Event Request Available (NERA), or Flush Queue Request (FQR) services and the logical
time of the next grant is greater than the time stamp of the scheduled save or (3) the
joined federate is in the time advancing state as a result of invocation of either the Time
Advance Request (TAR) or Next Event Request (NER) services and the logical time of the
next grant is greater than or equal to the time stamp of the scheduled save. [New in
Release 1]

Interpretation 2
Once a federation save has completed, a federate may use the same label for another
federation save, but this is not recommended.

Rationale: Although the Interface Specification does not say that save labels shall not be
reused, it is recommended that federates not re-use federation save labels. If federation
save labels were to be reused, this could result in unexpected results. [New in Release 2]

Service 6.2: Register Object Instance
Interpretation 1
If a federate has registered an object instance with a name and sometime later deletes it so
that the object instance no longer exists, a federate may register a new object instance
with this same name, however, this is not recommended.

Rationale: Although the Interface Specification does not say that object instance names
shall not be re-used, it is recommended object instance names not be re-used. If object
instance names were to be reused, this could result in unexpected results. [New in
Release 2]

Services 6.8 and 6.9: Delete Object instance and Remove Object
Instance
Interpretation 1
The text for the Delete object Instance service states that "The RTI shall use the Remove
Object Instance service to inform the reflecting federates that the object instance has been
deleted." This sentence should say instead, "The RTI shall use the Remove Object
Instance service to inform all other joined federates that know the object instance that the
object instance has been deleted."

Rationale: It is not necessary that a federate be currently subscribed to any of the
corresponding class attributes of an object instance in order to receive a Remove Object
Instance callback for that object instance. The pre-condition for receipt of the Remove
Object Instance callback stated in the Interface Specification is correct: the federate must
know about the object instance. [New in Release 2]

DRAFT
Internal Use Only

dod_interpretations_1.3_v3.doc

Service 6.13: Attributes In Scope
Interpretation 1
The fourth pre-condition of the Attributes In Scope service states simply that "the
federate is subscribed to the class attributes". This pre-condition is not complete. It
should say, "the federate is subscribed to the class attributes at the known class of the
object instance at this federate". [New in Release 2]

Service 6.14: Attributes Out Of Scope
The third pre-condition of the Attributes Out Of Scope service states that:
At least one of the following is not true:
 The federate knows about the object instance with the specified designator.
 The federate is subscribed to the class attributes.
 The federate does not own the instance attributes.
 If there are regions involved, they overlap, see 9.1, Overview.

This pre-condition is not correct in several respects. Instead, the following three
interpretations apply:

Interpretation 1
A federate must know about an object instance in order to receive an Attributes Out Of
Scope callback for any instance attributes of that object instance. If a federate does not
know about an object instance, it shall not receive an Attributes Out Of Scope callback
for any instance attributes of that object instance. [New in Release 2]

Interpretation 2
A federate must be subscribed to an instance attribute's corresponding class attribute at
the known class of the object instance in order to receive an Attributes Out Of Scope
callback for that instance attribute. If a federate is not subscribed to an instance attribute's
corresponding class attribute at the known class of the object instance, it shall not receive
an Attributes Out Of Scope callback for that instance attribute. If an instance attribute is
in scope for a federate and that federate unsubscribes that instance attribute's
corresponding class attribute at the known class of the object instance, then the instance
attribute will no longer be in scope for the federate. However, the federate shall not
receive an Attributes Out Of Scope callback for such an instance attribute that goes out of
scope as a result of this unsubscribe. This interpretation is consistent with Figure 10, the
"Implications of Ownership of Instance Attribute (i)" statechart. [New in Release 2]

Interpretation 3
A federate must not own an instance attribute in order to receive an Attributes Out Of
Scope callback for that instance attribute. If a federate owns an instance attribute, it shall
not receive an Attributes Out Of Scope callback for that instance attribute. If an instance
attribute is in scope for a federate and that federate becomes the owner of the instance
attribute, then the instance attribute will no longer be in scope for the federate. However,
the federate shall not receive an Attributes Out Of Scope callback for such an instance
attribute that goes out of scope as a result of the federate becoming its owner. This

DRAFT
Internal Use Only

dod_interpretations_1.3_v3.doc
interpretation is consistent with Figure 10, the "Implications of Ownership of Instance
Attribute (i)" statechart. [New in Release 2]

Service 6.15: Request Attribute Value Update
Interpretation 1
The 1.3 spec says that if the Request Attribute Value Update service is invoked with an
object class as parameter, “the RTI shall solicit the values of the specified instance
attributes for all the object instances of that class.” It is not at all clear what is meant by
the phrase an object instance of that class: An object instance registered at that class?
Known at that class? Discovered at that class? The DOD interpretation is the following:
when an object class is specified, the RTI shall solicit the values of the specified instance
attributes for all object instances registered at that class or at some subclass of that class.
[New in Release 1]

Service 6.17: Turn updates On For Object Instance service
Interpretation 1
The last pre-condition of the Turn Updates On For Object Instance service states that,
"Some other federate in the execution is actively subscribed to the attributes of the object
class". This pre-condition is not completely accurate. This pre-condition should instead
say, "For each attribute designator specified, there is at least one joined federate in the
federation execution for which the instance attribute is in scope via an active
subscription." [New in Release 2; Deleted in Release 3]

Interpretation 2
The last pre-condition of the Turn Updates On For Object Instance service states that,
"Some other federate in the execution is actively subscribed to the attributes of the object
class". This pre-condition is not completely accurate. This pre-condition should instead
say, "For each attribute designator specified, there is at least one joined federate in the
federation execution that is actively subscribed to the attribute at either the registered
class of the object instance or at a superclass of the registered class." [New in Release 3]

Service 7.2: Unconditional Attribute Ownership Divestiture and
other services that may result in instance attributes becoming
unowned
Interpretation 1
When an attribute becomes unowned, either by a federate invoking the Unconditional
Attribute Ownership Divestiture service, the Publish Object Class service, the Unpublish
Object Class service, or the Resign Federation Execution service, if no federates are in
either the “Acquiring” or “Willing to Acquire” state with respect to that instance
attribute, the RTI is expected to offer ownership of the attribute to all eligible federates
(excepting the federate that just released ownership of the attribute). The RTI shall offer
ownership of this attribute by invoking the Request Attribute Ownership Assumption
service at all federates that meet the preconditions for invocation of the Request Attribute
Ownership Assumption service, except for the federate that just released ownership of the
attributes. [New in Release 2]

DRAFT
Internal Use Only

dod_interpretations_1.3_v3.doc

Service 7.7: Attribute Ownership Acquisition
Interpretation 1
If a federate invokes the Attribute Ownership Acquisition service for an instance attribute
that is in the Acquisition Pending state, that instance attribute's state will remain
unchanged. In other words, if a federate invokes the Attribute Ownership Acquisition
service for an instance attribute that is in the Acquiring state, that instance attribute shall
continue to be in the Acquiring state. Likewise, if a federate invokes the Attribute
Ownership Acquisition service for an instance attribute that is in the Trying to Cancel
Acquisition state, that instance attribute shall continue to be in the Trying to Cancel
Acquisition state. [New in Release 2]

Service 7.16: Inform Attribute Ownership
Interpretation 1
There are three possible ownership designator values in the Inform Attribute Ownership
callback: attribute owned by a particular federate, attribute owned by the RTI, and
attribute unowned. Unowned instance attributes are those attributes that are not owned by
either a federate or the RTI. Examples of unowned instance attributes are attributes that
have been unconditionally divested and have not subsequently become owned by any
federate. Instance attributes that are owned by the RTI are instance attributes of
Management Object Model (MOM) object instances. For example, there is a MOM
object class Manager.Federate and one of its available attributes is FederateHandle. The
RTI publishes object class Manager.Federate and class attribute FederateHandle (as well
as other class attributes) at this class, and the RTI registers one object instance of this
class for each federate in a federation execution. The RTI owns the FederateHandle
instance attribute of each of these Manager.Federate object instances. (See section 11.1.2)
[New in Release 2]

Service 8.2: Enable Time Regulation
Interpretation 1
In response to invocation of the Enable Time Regulation service, the RTI shall indicate
the logical time that is assigned to the federate through the Time Regulation Enabled
service. According to the service description for the Enable Time Regulation service in
the 1.3 Interface Specification, the logical time that is assigned shall be greater than or
equal to that requested by the federate. Actually, the logical time that is provided when
time regulation is enabled shall be the smallest possible logical time that is greater than or
equal to that requested by the federate. This will enable the creation of federation
executions that join all federates and make them time-regulating and time-constrained at
time zero before beginning to advance time at all. [New in Release 1]

Service 8.3: Time Regulation Enabled
Interpretation 1
The second post-condition of this service says, "If the federate is time-constrained, no
additional TSO messages shall be delivered with time stamps less than or equal to the
provided time." This post-condition should instead say, "If the federate is time-

DRAFT
Internal Use Only

dod_interpretations_1.3_v3.doc
constrained, no additional TSO messages shall be delivered with time stamps less than
the provided time." [New in Release 2]

Service 8.10: Next Event Request
Interpretation 1
The Application Programmer's Interfaces (APIs) for the Next Event Request service
should have a Federation Time Is Invalid exception defined. (It is defined in the Interface
Specification, but not in all APIs.) [New in Release 1]

Service 8.21: Retract
Interpretation 1
The result of retracting a delete is undefined and will not be tested. [New in Release 1]

Interpretation 2
This service description states that, "Only messages sent in TSO may be retracted. A
federate may not retract messages in its past. A message shall be in a federate's past if its
time is earlier than the federate's current logical time."

This statement is not complete because it does not take the federate's lookahead into
account, nor does it distinguish between federates that are in the Time Granted state and
those that are in the Time Advancing state. As such, this statement implies that it would
be permissible for a federate to retract a TSO message that has a timestamp with a value
between the federate's logical time and the federate's logical time plus the federate's
lookahead. However, it is not permissible for a federate to retract a message with such a
time stamp.

A message may only be retracted if:
 - the retracting joined federate sent the message,
 - the message had a sent order type of TSO,
 - the joined federate is time-regulating, and
 - either:
 - the joined federate is in the Time Granted state and the message associated with the
specified retraction designator contained a time stamp that is larger than the joined
federate’s current logical time plus its actual lookahead
 or
 - the joined federate is in the Time Advancing state and the message associated with the
specified retraction designator contained a time stamp that is larger than the logical time
specified in the joined federate’s most recent advance request plus the joined federate’s
actual lookahead. [New in Release 2]

Service 9.6: Associate Region For Updates
Interpretation 1
A federate may associate a region for update with an instance attribute before becoming
an owner of that instance attribute. [New in Release 2]

Interpretation 2

DRAFT
Internal Use Only

dod_interpretations_1.3_v3.doc
A given instance attribute of a given object instance may be associated with multiple
regions. [New in Release 2]

Service 10.16: Get Attribute Routing Space Handle
Interpretation 1
The Get Attribute Routing Space Handle service should have a precondition and an
associated exception that prevents it from being invoked with an attribute that does not
have an associated routing space in the FED file. [New in Release 1]

Management Object Model (MOM): General
Interpretation 1
The Management Object Model uses a number of types (Boolean, string, enumerated),
without indicating how these types are represented. When a federate reflects values of
MOM instance attributes, the values shall be interpreted as ASCII text, suffixed with a
trailing NUL. Similarly, when a federate receives parameter values as part of MOM
interactions, the values shall be interpreted as ASCII text, suffixed with a trailing NUL;
when a federate supplies parameter values as part of a MOM interaction, the values shall
be interpreted as ASCII text, suffixed with a trailing NUL. Specifically:
• Handles shall be represented as small integers (in the range 0 to 232 –1) encoded as

base 10, unsigned. In lists of handles, the handles shall be separated by commas.
• Names shall be encoded as ASCII strings.
• Booleans shall be encoded as “true” or “false”.
• Enumerations shall be encoded as the literal name of the enumeration value as

defined in the attribute tables or interaction tables as text.
• There are two cases for how time and interval values shall be encoded:

• Time and interval values appearing as arguments in service calls that are callbacks
from the RTI to the federate shall be represented in some printable form that is
produced by the appropriate method in the time class implementation. For
example, in Java, the text representation is generated using the toString method;
in C++, it is generated using the getPrintableString method.

• Time and interval values sent as parameters in
Manager.Federate.Service.SOMESERVICE interactions are created using the
encode and decode methods of the time class implementation.

• Attributes defined as type long shall be encoded as base 10, unsigned.
[New in Release 1]

Interpretation 2
In the case in which a MOM interaction is sent that is missing a parameter, the federate
that sent the offending MOM interaction should receive a Manager.Federate.Report.Alert
interaction with an appropriate alert description, and the MOM interaction should be
rejected (that is, not acted upon). It should have no affect. [New in Release 1]

Interpretation 3
In the case in which a MOM Manager.Federate.Service.SOMESERVICE interaction is
sent on behalf of a federate when the preconditions for invoking SOMESERVICE at that

DRAFT
Internal Use Only

dod_interpretations_1.3_v3.doc
federate are not met, the federate that sent the offending MOM interaction should receive
a Manager.Federate.Report.Alert interaction with an appropriate alert description, and the
MOM interaction should be rejected (that is, not acted upon). It should have no affect.

In other words, the Manager.Federate.Report.Alert should be sent by the RTI to a
federate in response to that federate sending an erroneous MOM
Manager.Federate.Service interaction. A Manager.Federate.Report.Alert interaction
should always be sent when there is such an “exceptional” condition. There is no way to
turn the generation of such Manager.Federate.Report.Alert interactions on and off. [New
in Release 1]

Interpretation 4
There are many unexpected things that can happen if the MOM services are used
carelessly. For example, a federate can lose ownership of instance attributes (see the
11.2.1.2: Manager.Federate.Adjust.ModifyAttributeState interpretation), and a federate
can be resigned (see the 11.2.4.1:Manager.Federate.Service.ResignFederationExecution
interpretation). MOM must be used with caution. [New in Release 2]

11.2.1: Manager.Federate.Adjust
Interpretation 1
A Manager.Federate.Adjust interaction that is sent by a federate shall be received by the
RTI. If other federates are subscribed to the sent interaction class or to a superclass of the
sent interaction class, the interaction shall also be received by those subscribed federates.
[New in Release 2]

11.2.1.2: Manager.Federate.Adjust.ModifyAttributeState
Interpretation 1
If the Manager.Federate.Adjust.ModifyAttributeState interaction is used to try to cause
an instance attribute that is already owned by some federate to become owned by another
federate, a Manager.Federate.Report.Alert interaction shall be sent to the federate that
sent the Manager.Federate.Adjust.ModifyAttributeState interaction, and no change of
ownership shall occur. If the instance attribute is unowned, its ownership shall be
changed.

As a result of a federate sending the MOM
Manager.Federate.Adjust.ModifyAttributeState interaction, the RTI is not supposed to
generate either an Attribute Ownership Acquisition Notification or an Attribute
Ownership Divestiture Notification. However the RTI should generate discoveries and
scope advisories if they are warranted. [New in Release 1; Deleted in Release 2]

Interpretation 2
If the Manager.Federate.Adjust.ModifyAttributeState interaction is used to try to cause
an instance attribute that is already owned by some federate to become owned by another
federate, a change of ownership shall occur.

DRAFT
Internal Use Only

dod_interpretations_1.3_v3.doc
As a result of a federate sending the MOM
Manager.Federate.Adjust.ModifyAttributeState interaction, the RTI is not supposed to
generate either an Attribute Ownership Acquisition Notification or an Attribute
Ownership Divestiture Notification. However, the RTI should generate discoveries and
scope advisories if they are warranted.

Depending on the implementation, use of the
Manager.Federate.Adjust.ModifyAttributeState interaction could result in more than one
federate being granted ownership of an instance attribute, a federate that owns an instance
attribute losing ownership of that instance attribute without its knowledge or consent, a
federate being granted ownership of an instance attribute without its knowledge or
consent, and other unexpected behavior in a federation execution. Hence, MOM services
should be used with caution. [New in Release 2]

11.2.2.10: Manager.Federate.Request.RequestObjectInformation
Interpretation 1
When a Manager.Federate.Request.RequestObjectInformation interaction is sent for a
federate that does not know the object instance. The corresponding report interaction
should contain the federate handle, the object instance, and null strings for the remaining
parameters. [New in Release 1]

11.2.3: Manager.Federate.Report
Interpretation 1
As with all interactions, an interaction of class MOM Manager.Federate.Report or of a
subclass of class Manager.Federate.Report that is sent by the RTI shall be received only
by federates that are subscribed to the sent interaction class or to a superclass of the sent
interaction class. [New in Release 2]

11.2.3.5: Manager.Federate.Report.ReportObjectsOwned
Interpretation 1
The formatting of the ObjectCounts list in the
Manager.Federate.Report.ReportObjectsOwned interaction should contain handle/class
pairs for only those classes that have counts that are greater than zero, not for all classes.
So, for example, when the MOM Manager.Federate.Report.ReportObjectsOwned
interaction is sent for a federate that does not own the privilegeToDelete attribute of any
object instance, the ObjectCounts parameter in the interaction should be a null list (not a
list that includes handle/0 count pairs for every object class). The same is true for all
applicable other Manager.Federate.Report interactions, such as ReportUpdatesSent,
ReportInteractionsSent, ReportReflectionsReceived, ReportInteractionsReceived,
ReportObjectsUpdated, and ReportObjectsReflected. [New in Release 1]

11.2.3.8: MOM interaction subclass ReportUpdatesSent
Interpretation 1
According to the specification, the ReportUpdatesSent interaction shall report the
"number of updates sent (by object class) by the federate…". This wording is ambiguous

DRAFT
Internal Use Only

dod_interpretations_1.3_v3.doc
regarding the question of whether the number of updates is defined as the number of
times the Update Attribute Values service was invoked by the federate for all object
instances of a given object class, or the number of instance attributes that were updated
by the federate for all object instances of a given object class.

The DoD interpretation is that the number of updates is defined as the number of instance
attributes updated. That is, if a federate has invoked the Update Attribute Values service
only once, and in this service invocation were arguments for an object instance of class A
and n instance attributes of type reliable and m instance attributes of type best-effort, then
in response to an interaction of class Manager.Federate.Request.RequestUpdatesSent
being sent by a federate, two Manager.Federate.Report.ReportUpdatesSent interactions
should be sent by the RTI: one for transportation type reliable with an update count of n
and one for transportation type best-effort with an update count of m.

Rationale: The update service is a service that acts on instance attributes, not on object
instances. The fact that updates to several different instance attributes of an object
instance can be bundled together in a single Update Attribute Values service invocation
is provided as a convenience to the programmer. The value of an update count should not
depend on whether or not a federate chooses to combine certain instance attribute value
updates together in a single call or perform these updates as separate Update Attribute
Values service invocations.

Furthermore, consider that there is a MOM interaction subclass called
ReportReflectionsReceived (see 11.2.2.8 and 11.2.3.9), which is analogous to
ReportUpdatesSent. It would seem reasonable that the update and reflect counters should
be equal in the case in which the receiving federate actually received every update that
was sent by the sending federate. According to the DoD interpretation of these counters,
which is to count each instance attribute update individually, the update counter will
always equal the reflect counter. However, according to an interpretation of these
counters that counts the number of Update Attribute Values service invocations that were
made, the update counter may not equal the reflect counter. Sometimes a single update
service invocation will be broken into several reflect service invocations, making the
reflect counter exceed the update counter. Specifically, suppose instance attributes X and
Y of an object instance of object class A both have transportation types of reliable, but X
has an ordering type of time stamp and Y has an ordering type of receive-order. If
instance attributes X and Y are both updated in a single invocation of the Update
Attribute Values service by a time-regulating federate that includes a time stamp
argument in the service invocation, then according to the DoD interpretation, the reliable
updates-sent counter will be incremented by 2. According to the alternate interpretation,
it will be incremented by only 1. Now, at a time-constrained federate, this update will be
received as two separate reflects, one for instance attribute x with a message ordering
type of timestamp, and one for instance attribute y with a message ordering type of
receive-order. Hence, according to both interpretations, the
reliable reflects-received counter would be incremented by 2. The DoD interpretation is
preferable in this case, insofar as it enables the updates-sent counter to equal the
reflects-received counter. [New in Release 2]

DRAFT
Internal Use Only

dod_interpretations_1.3_v3.doc

11.2.3.9: MOM interaction subclass ReportReflectionsReceived
Interpretation 1
According to the specification, the ReportReflectionsReceived interaction shall report the
"number of reflections received (by object class) by the federate…". This wording is
ambiguous regarding the question of whether the number of reflections is defined as the
number of times the Reflect Attribute Values service was invoked at the federate for all
object instances of a given object class, or the number of instance attributes that had
values reflected by the federate for all object instances of a given object class.

The DoD interpretation is that the number of reflections is defined as the number of
instance attributes reflected. That is, if a federate has received the Reflect Attribute
Values service invocation only once, and in this service invocation were arguments for an
object instance of class A and n instance attributes of type reliable and m instance
attributes of type best-effort, then in response to an interaction of class
Manager.Federate.Request.RequestReflectionsReceived, two
Manager.Federate.Report.ReportReflectionsReceived interactions should be sent: one for
transportation type reliable with a reflect count of n and one for transportation type best-
effort with a reflect count of m.

Rationale: As with the Update Attribute Values service, the Reflect Attribute Values
service is a service that acts on instance attributes, not on object instances. The rationale
for this interpretation is analogous to the rationale for interpretation 11.2.3.8. [New in
Release 2]

	DoD Interpretations of the High Level Architecture Interface Specification, Version 1.3: Release 3
	Introduction
	How to use this document
	Service 4.3 : Destroy Federation Execution
	Service 4.6: Register Federation Synchronization Point
	Service 4.11: Request Federation Save
	Service 6.2: Register Object Instance
	Services 6.8 and 6.9: Delete Object instance and Remove Object Instance
	Service 6.13: Attributes In Scope
	Service 6.14: Attributes Out Of Scope
	Service 6.15: Request Attribute Value Update
	Service 6.17: Turn updates On For Object Instance service
	Service 7.2: Unconditional Attribute Ownership Divestiture and other services that may result in instance attributes becoming unowned
	Service 7.7: Attribute Ownership Acquisition
	Service 7.16: Inform Attribute Ownership
	Service 8.2: Enable Time Regulation
	Service 8.3: Time Regulation Enabled
	Service 8.10: Next Event Request
	Service 8.21: Retract
	Service 9.6: Associate Region For Updates
	Service 10.16: Get Attribute Routing Space Handle
	Management Object Model (MOM): General
	11.2.1: Manager.Federate.Adjust
	11.2.1.2: Manager.Federate.Adjust.ModifyAttributeState
	11.2.2.10: Manager.Federate.Request.RequestObjectInformation
	11.2.3: Manager.Federate.Report
	11.2.3.5: Manager.Federate.Report.ReportObjectsOwned
	11.2.3.8: MOM interaction subclass ReportUpdatesSent
	11.2.3.9: MOM interaction subclass ReportReflectionsReceived

